Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurosci ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548336

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique gaining more attention in neurodevelopmental disorders (NDDs). Due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical markers in typical developing (TD) individuals that may be used for the prediction of individual responses to tDCS. 57 TD male and female children received 2mA anodal and sham tDCS, targeting the left dorsolateral prefrontal cortex (DLPFCleft), right inferior frontal gyrus, and bilateral temporo-parietal junction. Response to tDCS was assessed based on task performance differences between anodal and sham tDCS in different neurocognitive tasks (N-back, Flanker, Mooney Faces Detection, Attentional Emotional Recognition task). Measures of cortical thickness (CT) and surface area (SA) were derived from 3-Tesla structural MRI scans. Associations between neuroanatomy and task performance were assessed using a general linear model. Machine learning (ML) algorithms were employed to predict responses to tDCS. Overall, vertex-wise estimates of SA were more closely linked to differences in task performance than measures of CT. Across ML algorithms, highest accuracies were observed for the prediction of N-back task performance differences following stimulation of the DLPFCleft, where 65% of behavioural variance was explained by variability in SA. Lower accuracies were observed for all other tasks and stimulated regions. This suggests that it may be possible to predict individual responses to tDCS for some behavioural measures and target regions. In the future, these models might be extended to predict treatment outcome in individuals with NDDs.Significance statement Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that has recently gained more attention in neurodevelopmental disorders (NDDs), such as autism and attention-deficit/hyperactivity disorder. However, due to the phenotypic heterogeneity of NDDs, tDCS is unlikely to be equally effective in all individuals. The present study aimed to establish neuroanatomical biomarkers in typical developing individuals that may be used for the prediction of individual responses to tDCS. Our findings suggest that it may be possible to accurately predict individual responses to tDCS for some behavioural measures using measures of neuroanatomy. In the future, our models might be extended to predict treatment outcome in individuals with clinical diagnoses, and may allow for more individualized, person-centred interventions.

2.
Front Neurosci ; 17: 1253559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027503

RESUMEN

Mindfulness-based processes have been shown to enhance attention and related behavioral responses, including analgesia, which is discussed as an effective method in the context of pain interventions. In the present review, we introduce the construct of mindfulness, delineating the concepts, factors, and processes that are summarized under this term and might serve as relevant components of the underlying mechanistic pathways in the field of pain. We also discuss how differences in factors such as definitions of mindfulness, study design, and strategies in mindfulness-based attention direction may need to be considered when putting the findings from previous studies into a whole framework. In doing so, we capitalize on a potential dynamic process model of mindfulness-based analgesia. In this respect, the so-called mindfulness-based analgesia may initially result from improved cognitive regulation strategies, while at later stages of effects may be driven by a reduction of interference between both cognitive and affective factors. With increasing mindfulness practice, pathways and mechanisms of mindfulness analgesia may change dynamically, which could result from adaptive coping. This is underlined by the fact that the neural mechanism of mindfulness analgesia is manifested as increased activation in the ACC and aINS at the beginner level while increased activation in the pINS and reduced activation in the lPFC at the expert level.

3.
Neurophysiol Clin ; 53(3): 102887, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37355398

RESUMEN

OBJECTIVES: Previous studies have shown that the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (preSMA) play an important role in motor inhibitory control. The aim of the study was to use theta frequency transcranial alternating current stimulation (tACS) to modulate brain activity in the rIFG and preSMA and to test the effects of stimulation using a motor response inhibition task. METHODS: In four sessions, 20 healthy participants received tACS at 6 Hz over preSMA or rIFG, or 20 Hz over rIFG (to test frequency specificity), or sham stimulation before task processing. After each type of stimulation, the participants performed the Go/NoGo task with simultaneous electroencephalogram (EEG) recording. RESULTS: By stimulating rIFG and preSMA with 6 Hz tACS, we were not able to modulate either behavioral performance nor the EEG correlate. Interestingly, 20 Hz tACS over the rIFG significantly increased theta activity, however without behavioral effects. This increased theta activity did not coincide with the stimulation area and was localized in the fronto-central and centro-parietal areas. CONCLUSIONS: The inclusion of a control frequency is crucial to test for frequency specificity. Our findings are in accordance with previous studies showing that after effects of tACS are not restricted to the stimulation frequency but can also occur in other frequency bands.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal , Corteza Motora/fisiología , Electroencefalografía , Inhibición Psicológica
4.
Sci Rep ; 13(1): 8438, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231030

RESUMEN

Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique with a wide variety of clinical and research applications. As increasingly acknowledged, its effectiveness is subject dependent, which may lead to time consuming and cost ineffective treatment development phases. We propose the combination of electroencephalography (EEG) and unsupervised learning for the stratification and prediction of individual responses to tDCS. A randomized, sham-controlled, double-blind crossover study design was conducted within a clinical trial for the development of pediatric treatments based on tDCS. The tDCS stimulation (sham and active) was applied either in the left dorsolateral prefrontal cortex or in the right inferior frontal gyrus. Following the stimulation session, participants performed 3 cognitive tasks to assess the response to the intervention: the Flanker Task, N-Back Task and Continuous Performance Test (CPT). We used data from 56 healthy children and adolescents to implement an unsupervised clustering approach that stratify participants based on their resting-state EEG spectral features before the tDCS intervention. We then applied a correlational analysis to characterize the clusters of EEG profiles in terms of participant's difference in the behavioral outcome (accuracy and response time) of the cognitive tasks when performed after a tDCS-sham or a tDCS-active session. Better behavioral performance following the active tDCS session compared to the sham tDCS session is considered a positive intervention response, whilst the reverse is considered a negative one. Optimal results in terms of validity measures was obtained for 4 clusters. These results show that specific EEG-based digital phenotypes can be associated to particular responses. While one cluster presents neurotypical EEG activity, the remaining clusters present non-typical EEG characteristics, which seem to be associated with a positive response. Findings suggest that unsupervised machine learning can be successfully used to stratify and eventually predict responses of individuals to a tDCS treatment.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Niño , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Cruzados , Electroencefalografía/métodos , Corteza Prefrontal/fisiología , Tiempo de Reacción , Método Doble Ciego
5.
Neurobiol Pain ; 13: 100122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910586

RESUMEN

Social interactions affect individual behaviours, preferences, and attitudes. This is also critical in the context of experiencing pain and expressing pain behaviours, and may relate to learned emotional responses. In this respect, individual variability in the medial prefrontal cortex (mPFC), which is involved in adjusting an organism's behaviour to its environment by evaluating and interpreting information within the context of past experiences, is important. It is critical for selecting suitable behavioural responses within a social environment and may reinforce maladaptation in chronic pain. In our study, we used brain imaging during appetitive and aversive pavlovian conditioning in persons with chronic back pain (CBP), subacute back pain (SABP), and healthy controls (HC), together with information on spouse responses to pain behaviours. We also examined the relationship of these responses with pain-related interference in the patients. Our findings yielded a significant negative association between mPFC responses to appetitive and aversive learning in CBP. We also observed a significant negative association for mPFC responses during aversive learning and distracting spouse responses, and a significant positive association between mPFC responses during appetitive learning and solicitous spouse responses in CBP. Both significantly predicted pain-related interference in the CBP group (explained variance up to 53%). Significant associations were not found for SABP or HC. Our findings support an association between appetitive and aversive pavlovian learning, related brain circuits and spouse responses to pain in CBP, where appetitive and aversive learning processes seem to be differentially involved. This can inform prevention and early intervention in a mechanistic approach.

6.
J Neurosci Res ; 101(4): 405-423, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36537991

RESUMEN

There is substantial intersubject variability of behavioral and neurophysiological responses to transcranial electrical stimulation (tES), which represents one of the most important limitations of tES. Many tES protocols utilize a fixed experimental parameter set disregarding individual anatomical and physiological properties. This one-size-fits-all approach might be one reason for the observed interindividual response variability. Simulation of current flow applying head models based on available anatomical data can help to individualize stimulation parameters and contribute to the understanding of the causes of this response variability. Current flow modeling can be used to retrospectively investigate the characteristics of tES effectivity. Previous studies examined, for example, the impact of skull defects and lesions on the modulation of current flow and demonstrated effective stimulation intensities in different age groups. Furthermore, uncertainty analysis of electrical conductivities in current flow modeling indicated the most influential tissue compartments. Current flow modeling, when used in prospective study planning, can potentially guide stimulation configurations resulting in individually effective tES. Specifically, current flow modeling using individual or matched head models can be employed by clinicians and scientists to, for example, plan dosage in tES protocols for individuals or groups of participants. We review studies that show a relationship between the presence of behavioral/neurophysiological responses and features derived from individualized current flow models. We highlight the potential benefits of individualized current flow modeling.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Estudios Prospectivos , Estudios Retrospectivos , Simulación por Computador , Encéfalo/fisiología
7.
Clin Neurophysiol ; 142: 96-108, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029581

RESUMEN

OBJECTIVE: Alpha oscillations are linked to inhibitory capabilities in higher cognitive processing. Transcranial alternating current stimulation (tACS) at 10 Hz can enhance alpha oscillations and modulate behaviour. One possibility to increase the efficacy of tACS may be stimulating at the individual alpha frequency (IAF). The present work addresses this issue (among others) to increase the current understanding of the functional role of alpha oscillations in higher cognitive tasks. METHODS: Twenty-two healthy and 13 dyslexic participants performed two word decision tasks while receiving IAF-tACS over the left prefrontal cortex. Resting EEG was recorded to detect electrophysiological changes. Cortical excitability was assessed with TMS. RESULTS: Dyslexic participants performed worse in the phonological task. However, no significant tACS effects were found. Interestingly, higher cortical excitability was correlated with faster responses in healthy controls. In dyslexics this association significantly differed in the phonological task. CONCLUSION: The non-significant modulation by tACS might be explained by methodological limitations. Alternatively, it may indicate that alpha oscillations do not play a functional role in phonological decisions. The findings on cortical excitability expands the existing literature and may reflect the specific phonological deficit in dyslexics. SIGNIFICANCE: Our critical discussion of these null findings expands the systematic knowledge on alpha-tACS for future studies.


Asunto(s)
Excitabilidad Cortical , Estimulación Transcraneal de Corriente Directa , Humanos , Corteza Prefrontal
8.
Clin Neurophysiol Pract ; 7: 146-165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734582

RESUMEN

Attempts to enhance human memory and learning ability have a long tradition in science. This topic has recently gained substantial attention because of the increasing percentage of older individuals worldwide and the predicted rise of age-associated cognitive decline in brain functions. Transcranial brain stimulation methods, such as transcranial magnetic (TMS) and transcranial electric (tES) stimulation, have been extensively used in an effort to improve cognitive functions in humans. Here we summarize the available data on low-intensity tES for this purpose, in comparison to repetitive TMS and some pharmacological agents, such as caffeine and nicotine. There is no single area in the brain stimulation field in which only positive outcomes have been reported. For self-directed tES devices, how to restrict variability with regard to efficacy is an essential aspect of device design and function. As with any technique, reproducible outcomes depend on the equipment and how well this is matched to the experience and skill of the operator. For self-administered non-invasive brain stimulation, this requires device designs that rigorously incorporate human operator factors. The wide parameter space of non-invasive brain stimulation, including dose (e.g., duration, intensity (current density), number of repetitions), inclusion/exclusion (e.g., subject's age), and homeostatic effects, administration of tasks before and during stimulation, and, most importantly, placebo or nocebo effects, have to be taken into account. The outcomes of stimulation are expected to depend on these parameters and should be strictly controlled. The consensus among experts is that low-intensity tES is safe as long as tested and accepted protocols (including, for example, dose, inclusion/exclusion) are followed and devices are used which follow established engineering risk-management procedures. Devices and protocols that allow stimulation outside these parameters cannot claim to be "safe" where they are applying stimulation beyond that examined in published studies that also investigated potential side effects. Brain stimulation devices marketed for consumer use are distinct from medical devices because they do not make medical claims and are therefore not necessarily subject to the same level of regulation as medical devices (i.e., by government agencies tasked with regulating medical devices). Manufacturers must follow ethical and best practices in marketing tES stimulators, including not misleading users by referencing effects from human trials using devices and protocols not similar to theirs.

10.
Sci Rep ; 11(1): 21512, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728684

RESUMEN

Methodological studies investigating transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) in paediatric populations are limited. Therefore, we investigated in a paediatric population whether stimulation success of multichannel tDCS over the lDLPFC depends on concurrent task performance and individual head anatomy. In a randomised, sham-controlled, double-blind crossover study 22 healthy participants (10-17 years) received 2 mA multichannel anodal tDCS (atDCS) over the lDLPFC with and without a 2-back working memory (WM) task. After stimulation, the 2-back task and a Flanker task were performed. Resting state and task-related EEG were recorded. In 16 participants we calculated the individual electric field (E-field) distribution. Performance and neurophysiological activity in the 2-back task were not affected by atDCS. atDCS reduced reaction times in the Flanker task, independent of whether atDCS had been combined with the 2-back task. Flanker task related beta oscillation increased following stimulation without 2-back task performance. atDCS effects were not correlated with the E-field. We found no effect of multichannel atDCS over the lDLPFC on WM in children/adolescents but a transfer effect on interference control. While this effect on behaviour was independent of concurrent task performance, neurophysiological activity might be more sensitive to cognitive activation during stimulation. However, our results are limited by the small sample size, the lack of an active control group and variations in WM performance.


Asunto(s)
Cognición/fisiología , Corteza Prefontal Dorsolateral/fisiología , Memoria a Corto Plazo/fisiología , Análisis y Desempeño de Tareas , Estimulación Transcraneal de Corriente Directa/métodos , Adolescente , Niño , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas
11.
Front Neurol ; 12: 732034, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34531819

RESUMEN

It has been well-documented that the brain changes in states of chronic pain. Less is known about changes in the brain that predict the transition from acute to chronic pain. Evidence from neuroimaging studies suggests a shift from brain regions involved in nociceptive processing to corticostriatal brain regions that are instrumental in the processing of reward and emotional learning in the transition to the chronic state. In addition, dysfunction in descending pain modulatory circuits encompassing the periaqueductal gray and the rostral anterior cingulate cortex may also be a key risk factor for pain chronicity. Although longitudinal imaging studies have revealed potential predictors of pain chronicity, their causal role has not yet been determined. Here we review evidence from studies that involve non-invasive brain stimulation to elucidate to what extent they may help to elucidate the brain circuits involved in pain chronicity. Especially, we focus on studies using non-invasive brain stimulation techniques [e.g., transcranial magnetic stimulation (TMS), particularly its repetitive form (rTMS), transcranial alternating current stimulation (tACS), and transcranial direct current stimulation (tDCS)] in the context of musculoskeletal pain chronicity. We focus on the role of the motor cortex because of its known contribution to sensory components of pain via thalamic inhibition, and the role of the dorsolateral prefrontal cortex because of its role on cognitive and affective processing of pain. We will also discuss findings from studies using experimentally induced prolonged pain and studies implicating the DLPFC, which may shed light on the earliest transition phase to chronicity. We propose that combined brain stimulation and imaging studies might further advance mechanistic models of the chronicity process and involved brain circuits. Implications and challenges for translating the research on mechanistic models of the development of chronic pain to clinical practice will also be addressed.

12.
Prog Brain Res ; 264: 91-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34167666

RESUMEN

BACKGROUND: Evidence for the application of transcranial direct current stimulation (tDCS) in the clinical care of attention-deficit/hyperactivity disorder (ADHD) is limited. Therefore, we aimed to summarize study results using meta-analyses of measures of the cardinal symptoms of ADHD. METHODS: We conducted a systematic literature search (PubMed/pubpsych/PsychInfo/WOS) until 01/05/2020 for randomized controlled trials (RCTs) evaluating tDCS vs. control condition in patients with ADHD. A random effects meta-analysis of symptom-related outcomes was performed separately for data on the immediate effect and follow-up. Subgroup- and metaregression analyses for patient characteristics and tDCS parameters were included. RESULTS: Meta-analyzing 13 studies (n=308, age=23.7±13.3), including 20 study arms, tDCS had an immediate effect on overall symptom severity, inattention, and impulsivity, but not on hyperactivity. Results were significant in children and adolescents (8 studies, n=133, age=12.4±3.0). Follow-up data (3 days-4 weeks after stimulation) suggested an ongoing beneficial effect regarding overall symptom severity and a delayed effect on hyperactivity. DISCUSSION: TDCS seems to be a promising method to treat clinical symptoms in ADHD with long-lasting effects. Still, more research considering the individual neuropsychological and anatomical dispositions of the subjects is needed to optimize tDCS protocols and efficacy. Safety issues of tDCS treatment in children and adolescents are addressed.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/terapia , Niño , Cognición , Humanos , Conducta Impulsiva , Resultado del Tratamiento , Adulto Joven
13.
Prog Brain Res ; 264: 41-56, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34167664

RESUMEN

Transcranial direct current stimulation protocols are often applied with a fixed parameter set to all subjects participating in an interventional study. This might lead to considerable effect variation in inhomogeneous subject groups or when transferring stimulation protocols to different age groups. The aim of this study was to evaluate magnitude differences of the electric current density distribution on the gray matter surface in children, adolescent and adults in correlation with the individual volume conductor geometry. We generated individual six compartment finite element models from structural magnetic resonance images of four children (age: 10.95 a±1.32 a), eight adolescents (age: 15.10 a±1.16 a) and eight young adults (age: 21.62 a±2.45 a). We determined the skull thickness in the models as Euclidean distance between the surface of the cerebrospinal fluid compartment and outer skull boundary. For tDCS simulations, we modeled 5×7cm patch electrodes impressing 1mA current intensity as anode and cathode over the left M1 and the right fronto-polar orbit, respectively. The resulting current density was analyzed on the gray matter surface. Our results demonstrate higher cortical current density magnitudes in children compared to adults for a given tDCS current strength. Above the evaluated cortex, the skull thickness increased with age. In conclusion, we underline the importance of age-dependent and individual models in tDCS simulations.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Niño , Humanos , Imagen por Resonancia Magnética , Cráneo/diagnóstico por imagen , Adulto Joven
14.
Neuroscience ; 463: 264-271, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33722674

RESUMEN

The left posterior inferior frontal gyrus in the prefrontal cortex is a key region for phonological aspects of language processing. A previous study has shown that alpha-tACS over the prefrontal cortex applied before task processing facilitated phonological decision-making and increased task-related theta power. However, it is unclear how alpha-tACS affects phonological processing when applied directly during the task. Moreover, the frequency specificity of this effect is also unclear since the majority of neurostimulation studies tested a single frequency only. The present study addressed the question whether and how 10 Hz online tACS affects phonological decisions. To this end, 24 healthy participants received tACS at 10 Hz or 16.18 Hz (control frequency) or sham stimulation over the left prefrontal cortex during task processing in three sessions. As an unexpected finding, 16.18 Hz significantly impaired task accuracy relative to sham stimulation, without affecting response speed. There was no significant difference in phonological task performance between 10 Hz and 16.18 Hz tACS or between 10 Hz and sham stimulation. Our results support the functional relevance of the left prefrontal cortex for phonological decisions and suggest that online beta-tACS may modulate language comprehension.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Lingüística , Corteza Prefrontal , Tiempo de Reacción , Análisis y Desempeño de Tareas
15.
Front Hum Neurosci ; 14: 349, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100989

RESUMEN

Anodal transcranial direct current stimulation (tDCS), applied over the left dorsolateral prefrontal cortex (lDLPFC), can produce significant effects on working memory (WM) performance and associated neurophysiological activity. However, results from previous studies are inconsistent and occasionally contradictory. This inconsistency may be attributed to methodological and individual differences during experiments. This study therefore investigated two hypotheses: (1) A multichannel-optimized montage was expected to be more effective than a classical bipolar montage, because of increased focality. (2) The subjects were expected to benefit differently from the stimulation depending on their initial task performance. In a sham-controlled crossover study, 24 healthy participants received bipolar, multichannel, and sham stimulation for 20 min in randomized order, targeting the lDLPFC while performing a 2-back WM task. After stimulation, electroencephalography (EEG) was recorded at rest and during 2-back and nontarget continuous performance task (CPT) performance. Bipolar and multichannel stimulations were both well tolerated and effectively blinded. We found no effect of stimulation on behavioral performance or neuronal oscillations comparing the classical bipolar or multichannel montage with sham stimulation. We did, however, find an interaction between stimulation and initial task performance. For multichannel stimulation, initially low-performing participants tended to improve their WM performance while initially high-performing participants tended to worsen their performance compared to sham stimulation. Both tDCS montages induced changes in neural oscillatory power, which correlated with baseline performance. The worse the participants' initial WM performance was, the more task-related theta power was induced by multichannel and bipolar stimulation. The same effect was observed for alpha power in the nontarget task following multichannel stimulation. Notably, we were not able to show a superiority of multichannel stimulation compared to bipolar stimulation. Still, comparing both montages with sham stimulation, multichannel stimulation led to stronger effects than bipolar stimulation. The current study highlights the importance of investigating different parameters with potential influence on tDCS effects in combination. Our results demonstrate how individual differences in cognitive performance and electrode montages influence effects of tDCS on neuropsychological performance. These findings support the idea of an individualized and optimized stimulation setting, potentially leading to increased tDCS effects.

16.
Neural Plast ; 2020: 8896423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32855633

RESUMEN

The aim of this study was to investigate the effect of transcranial random noise (tRNS) and transcranial alternating current (tACS) stimulation on motor cortex excitability in healthy children and adolescents. Additionally, based on our recent results on the individual response to sham in adults, we explored this effect in the pediatric population. We included 15 children and adolescents (10-16 years) and 28 adults (20-30 years). Participants were stimulated four times with 20 Hz and 140 Hz tACS, tRNS, and sham stimulation (1 mA) for 10 minutes over the left M1HAND. Single-pulse MEPs (motor evoked potential), short-interval intracortical inhibition, and facilitation were measured by TMS before and after stimulation (baseline, 0, 30, 60 minutes). We also investigated aspects of tolerability. According to the individual MEPs response immediately after sham stimulation compared to baseline (Wilcoxon signed-rank test), subjects were regarded as responders or nonresponders to sham. We did not find a significant age effect. Regardless of age, 140 Hz tACS led to increased excitability. Incidence and intensity of side effects did not differ between age groups or type of stimulation. Analyses on responders and nonresponders to sham stimulation showed effects of 140 Hz, 20 Hz tACS, and tRNS on single-pulse MEPs only for nonresponders. In this study, children and adolescents responded to 1 mA tRNS and tACS comparably to adults regarding the modulation of motor cortex excitability. This study contributes to the findings that noninvasive brain stimulation is well tolerated in children and adolescents including tACS, which has not been studied before. Finally, our study supports a modulating role of sensitivity to sham stimulation on responsiveness to a broader stimulation and age range.


Asunto(s)
Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adolescente , Adulto , Factores de Edad , Niño , Excitabilidad Cortical , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa/efectos adversos , Estimulación Magnética Transcraneal , Adulto Joven
17.
Brain Topogr ; 33(3): 355-374, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32303950

RESUMEN

In Autism Spectrum Disorders (ASD), impaired response inhibition and lack of adaptation are hypothesized to underlie core ASD symptoms, such as social communication and repetitive, stereotyped behavior. Thus, the aim of the present study was to compare neural correlates of inhibition, post-error adaptation, and reaction time variability in ASD and neuro-typical control (NTC) participants by investigating possible differences in error-related changes of oscillatory MEG activity. Twelve male NTC (mean age 20.3 ± 3.7) and fourteen male patients with ASD (mean age 17.8 ± 2.9) were included in the analysis. Subjects with ASD showed increased error-related reaction time variability. MEG analysis revealed decreased beta power in the ASD group in comparison to the NTC group over the centro-parietal channels in both, the pre-stimulus and post-response interval. In the ASD group, mean centro-parietal beta power negatively correlated with dimensional autism symptoms. In both groups, false alarms were followed by an early increase in temporo-frontal theta to alpha power; and by a later decrease in alpha to beta power at central and posterior sensors. Single trial correlations were additionally studied in the ASD group, who showed a positive correlation of pre-stimulus beta power with post-response theta, alpha, and beta power, particularly after hit trials. On a broader scale, the results deliver important insights into top-down control deficits that may relate to core symptoms observed in ASD.


Asunto(s)
Trastorno del Espectro Autista , Inhibición Psicológica , Magnetoencefalografía , Adolescente , Adulto , Cognición , Humanos , Masculino , Tiempo de Reacción , Adulto Joven
19.
Sci Rep ; 9(1): 20028, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882672

RESUMEN

Functional and effective connectivity measures for tracking brain region interactions that have been investigated using both electroencephalography (EEG) and magnetoencephalography (MEG) bringing up new insights into clinical research. However, the differences between these connectivity methods, especially at the source level, have not yet been systematically studied. The dynamic characterization of coherent sources and temporal partial directed coherence, as measures of functional and effective connectivity, were applied to multimodal resting EEG and MEG data obtained from 11 young patients (mean age 13.2 ± 1.5 years) with attention-deficit/hyperactivity disorder (ADHD) and age-matched healthy subjects. Additionally, machine-learning algorithms were applied to the extracted connectivity features to identify biomarkers differentiating the two groups. An altered thalamo-cortical connectivity profile was attested in patients with ADHD who showed solely information outflow from cortical regions in comparison to healthy controls who exhibited bidirectional interregional connectivity in alpha, beta, and gamma frequency bands. We achieved an accuracy of 98% by combining features from all five studied frequency bands. Our findings suggest that both types of connectivity as extracted from EEG or MEG are sensitive methods to investigate neuronal network features in neuropsychiatric disorders. The connectivity features investigated here can be further tested as biomarkers of ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Mapeo Encefálico/métodos , Adolescente , Algoritmos , Niño , Electroencefalografía/métodos , Humanos , Magnetoencefalografía/métodos , Masculino , Máquina de Vectores de Soporte
20.
Exp Brain Res ; 237(11): 2885-2895, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31482197

RESUMEN

This study investigates the effect of corticospinal excitability during sham stimulation on the individual response to transcranial non-invasive brain stimulation (tNIBS). Thirty healthy young adults aged 24.2 ± 2.8 S.D. participated in the study. Sham, as well as 1 mA of tRNS and 140 Hz tACS stimulation were applied for 10 min each at different sessions. The effect of each stimulation type was quantified by recording TMS-induced, motor evoked potentials (MEPs) before (baseline) and at fixed time points after stimulation (T0, T30, T60 min.). According to the individual response to sham stimulation at T0 in comparison to baseline MEPs, subjects were regarded as responder or non-responder to sham. Following, MEPs at T0, T30 and T60 after verum or sham stimulation were assessed with a repeated measures ANOVA with the within-subject factor stimulation (sham, tRNS, 140 Hz tACS) and the between-subjects factor group (responder vs non-responder). We found that individuals who did not show immediately changes in excitability in sham stimulation sessions were the ones who responded to active stimulation conditions. On the other hand, individuals who responded to sham condition, by either increases or decreases in MEPS, did not respond to active verum stimulation. This result suggests that the presence or lack of responses to sham stimulation can provide a marker for how individuals will respond to tRNS/tACS and thus provide an explanation for the variability in interindividual response. The results of this study draw attention to the general reactivity of the brain, which can be taken into account when planning future studies using tNIBS.


Asunto(s)
Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Estimulación Transcraneal de Corriente Directa , Adolescente , Adulto , Método Doble Ciego , Femenino , Humanos , Masculino , Placebos , Estimulación Magnética Transcraneal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...